
Experimental assessment of supervised algorithms to classify targeted land-cover using ultra-high resolution multispectral UAS imagery Alexander Lynch Advisor: Dr. Benjamin W. Heumann Department of Geography, Central Michigan University, Mount Pleasant, Michigan 48859 USA

Introduction

- Thematic land cover classification is one of the primary application used in remote sensing.
- Unmanned Aerial System (UAS) platform have provide potential for acquiring remote
- data more rapidly, with increased spatial resolution, increased site revisit time.
- Opportunity to create detailed maps of Michigan's wetland communities.
- Objectives
 - 1) Map vegetation zones in a wetland community.
 - 2) Compare classification algorithms for classification accuracy.

Study Area and Data

study site and 12 acre rectangle subset used for analysis (above)—Study site was located in Oakland County Michigan, USA. [42°51'5.91''N, 83°28'7.84''W]

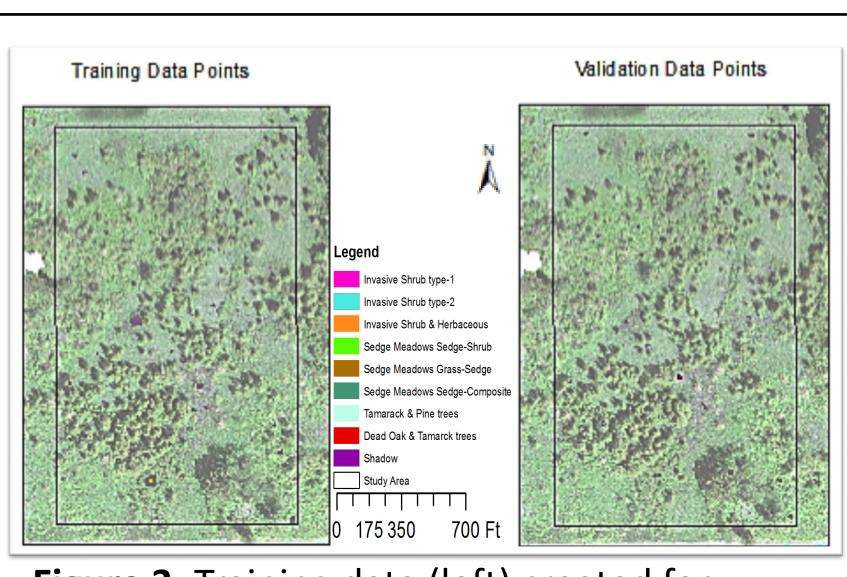


Figure 3. Training data (left) created for classification and validation data from GPS (right) used to compute classification accuracy.

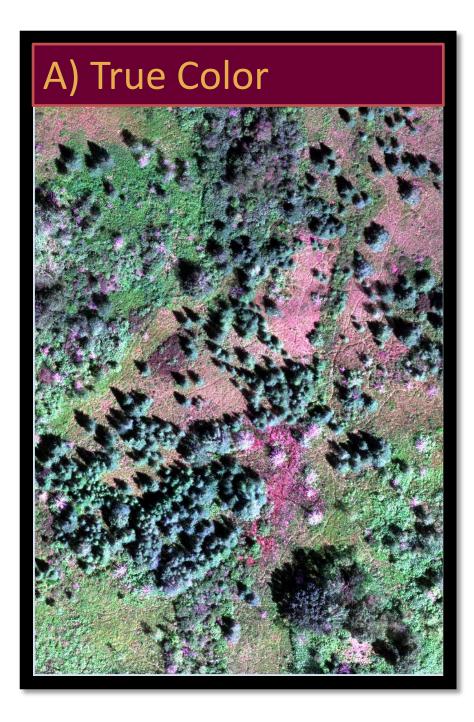
Acknowledgements

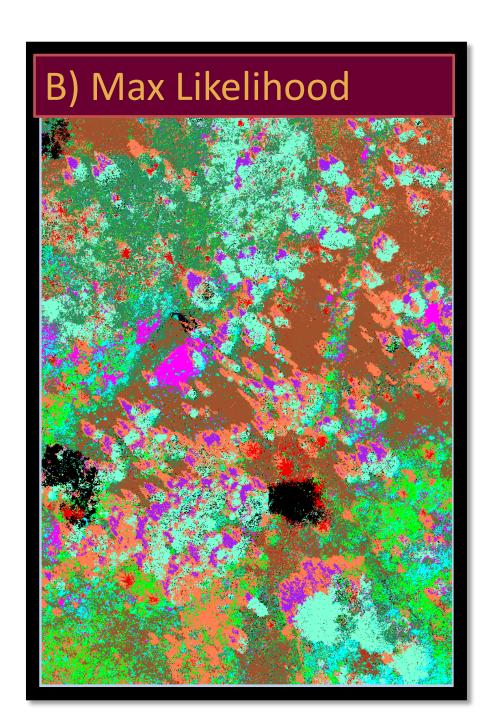
Dr. Benjamin W. Heumann supervised this research with assistance from Rachel Hackett. Data was provided by Rachel Hackett and John Gross, Center for Geographic Information Science. Special Thanks to the Nature Conservancy and the Michigan Department of Natural Resources.

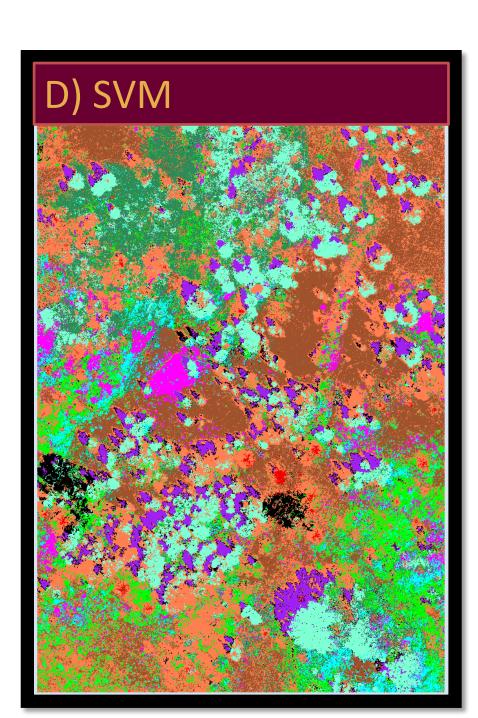
Figure 2: 3d Robotcs x8+ UAS mounted with dual Micasense Rededge multispectral cameras.

Table 1. Spectracamera system	al bands of mult	ispectral
Band	Wavelength (nm)	FWHM
Blue - 1	440	25
Blue - 2	475	20
Green - 1	540	18
Green - 2	560	20
Yellow	645	17
Red	668	10
Rededge - 1	700	10
Rededge - 2	717	10
Rededge - 3	740	20
Near-Infrared	840	40

Methods


- <u>Step 1: Compute Class Spectral Separability</u>
 - Estimates ability to distinguish classes using spectral data
 - Jefferies-Matusita (JM) distance
- Step 2: Supervised Classification


 - Compare 4 common algorithms space


 - linear boundaries between classes in n-D space.
- Step 3: Accuracy Assessment

 - Create confusion matrix (tabulation of errors)
 - Calculate accuracy statistics
 - Overall accuracy

Results: Classification

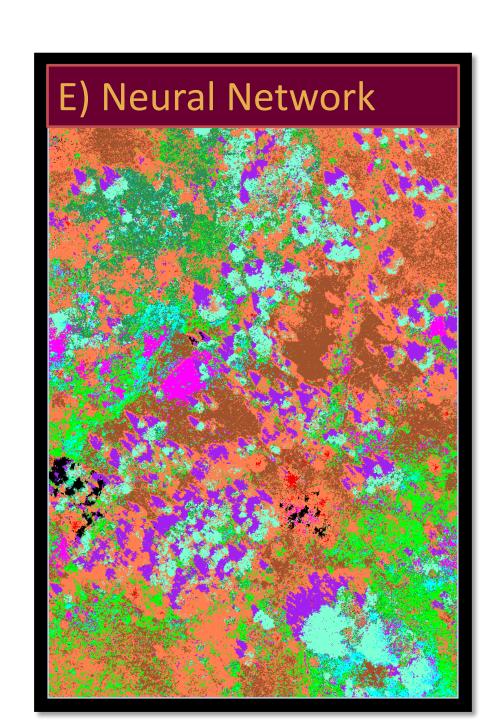


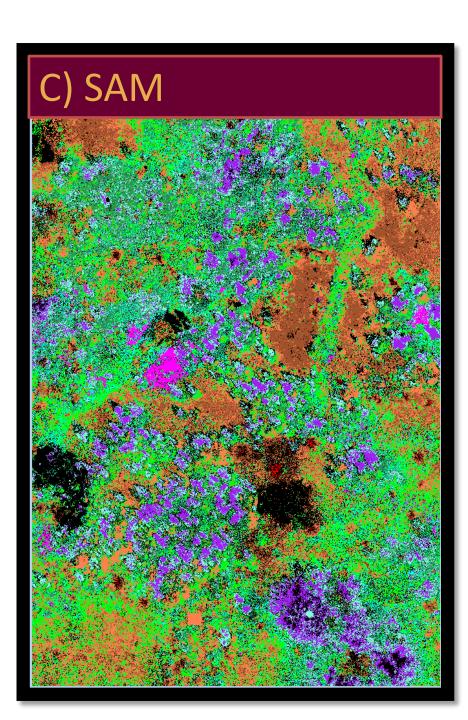
Figure 4. Supervised classification output for ultra-high multispectral imagery

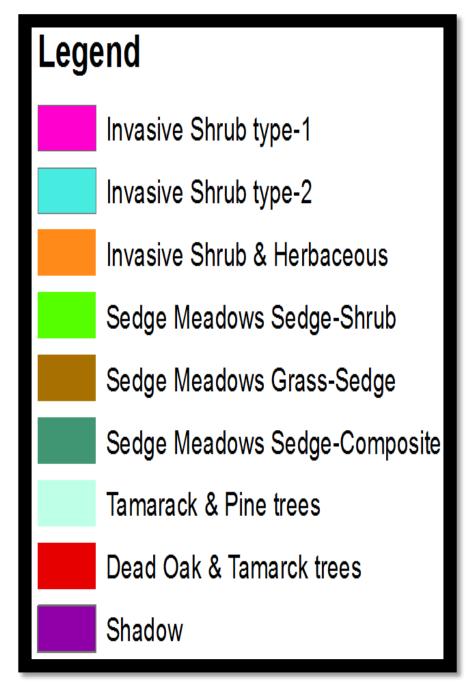
> 1.9 = Good Separability – classes well defined

< 1.0 = Poor Separability - classes should be merged

1.0 – 1.9 = Medium Separability – Potential Confusion

• Identify spectral characteristics for each class and create resulting map


1) Maximum Likelihood: Statistical classifier based on spectral mean and variance in n-D


2) Spectral Angle Mapper (SAM): Classifier based on angle between bands in n-D space 3) Support Vector Machine (SVM): Machine learning algorithm that optimizes non-

4) Neural Networks: Machine learning algorithm that simulate human learning process

Compare classification maps with validation data from field

• Kappa statistic - accounts for relative abundance of each class Omission error – number of validation points incorrectly classified Commission error – number of pixels incorrectly classified

Results: Spectral Separability

Table 2. List JM distance between given pair of training class file. Values 2.0-1.9 indicate strong spectral separability, 1.9-1.0 indicate moderate separability & values less than 1 indicate poor separability among training data

Invasive Shr IH 1 Saturate Sedge Meado Invasive Shru

validation data Figure

Omission Error (%)

Institute for Great Lakes Research

Training Data		JM Distance	i raining Da	JM Distance	
Class 1	Class 2	JIVI DIStance	Class 1	Class 2	JIVI DIStance
Sedge Meadows Sedge-Composite	Sedge Meadows Sedge-Shrub	1.350	IH_1 Saturated	Dead Oak & Tamarck trees	1.986
Invasive Shrub type-2	Sedge Meadows Sedge-Shrub	1.514	Sedge Meadows Grass-Sedge	Dead Oak & Tamarck trees	1.989
Invasive Shrub type-2	Sedge Meadows Sedge-Composite	1.522	Invasive Shrub type-1	Invasive Shrub & Herbaceous	1.991
Invasive Shrub & Herbaceous	Sedge Meadows Sedge-Shrub	1.692	IH_1 Saturated	Invasive Shrub type-1	1.991
Sedge Meadows Sedge-Composite	Tamarck & Oak trees	1.812	IH_1 Saturated	Sedge Meadows Grass-Sedge	1.994
Sedge Meadows Sedge-Composite	Invasive Shrub & Herbaceous	1.889	Sedge Meadows Grass-Sedge	Tamarck & Oak trees	1.995
Sedge Meadows Grass-Sedge	Invasive Shrub & Herbaceous	1.908	Dead Oak & Tamarck trees	Sedge Meadows Sedge-Shrub	1.996
Invasive Shrub type-1	Sedge Meadows Sedge-Composite	1.908	Dead Oak & Tamarck trees	Tamarck & Oak trees	1.996
IH_1 Saturated	Sedge Meadows Sedge-Composite	1.915	Invasive Shrub type-1	Sedge Meadows Grass-Sedge	1.998
Invasive Shrub type-2	Tamarck & Oak trees	1.916	Sedge Meadows Sedge-Composite	Dead Oak & Tamarck trees	1.998
IH_1 Saturated	Tamarck & Oak trees	1.929	Sedge Meadows Grass-Sedge	Invasive Shrub type-2	1.998
Tamarck & Oak trees	Sedge Meadows Sedge-Shrub	1.942	Invasive Shrub type-1	Dead Oak & Tamarck trees	2.000
Tamarck & Oak trees	Invasive Shrub & Herbaceous	1.947	Shadow	Invasive Shrub & Herbaceous	2.000
Invasive Shrub type-1	Sedge Meadows Sedge-Shrub	1.952	Shadow	Tamarck & Oak trees	2.000
Dead Oak & Tamarck trees	Invasive Shrub & Herbaceous	1.954	IH_1 Saturated	Shadow	2.000
Invasive Shrub type-1	Invasive Shrub type-2	1.954	Invasive Shrub type-1	Shadow	2.000
Sedge Meadows Grass-Sedge	Sedge Meadows Sedge-Composite	1.957	Invasive Shrub type-2	Dead Oak & Tamarck trees	2.000
IH_1 Saturated	Sedge Meadows Sedge-Shrub	1.958	Shadow	Sedge Meadows Sedge-Shrub	2.000
IH_1 Saturated	Invasive Shrub & Herbaceous	1.959	Shadow	Dead Oak & Tamarck trees	2.000
Invasive Shrub type-2	Invasive Shrub & Herbaceous	1.966	Sedge Meadows Sedge-Composite	Shadow	2.000
IH_1 Saturated	Invasive Shrub type-2	1.972	Sedge Meadows Grass-Sedge	Shadow	2.000
Sedge Meadows Grass-Sedge	Sedge Meadows Sedge-Shrub	1.973	Invasive Shrub type-2	Shadow	2.000
Invasive Shrub type-1	Tamarck & Oak trees	1.975			
			-		

Results: Accuracy

Table 3. Results of Confusion Error Matrix for each classifier using GPS

e Classifier	Kappa Statistic	Overall Accuracy
) Maximum likelihood	0.6674	70.8457%
) Spectral Angle Mapper	0.323	39.2539%
) Support Vector Machine	0.6242	67.0407%
) Neutral Net	0.5811	64.0297%

Table 4. Maximum likelihood supervised classification output confusion error matrix using validation data

type-1Grass-seagetype-2composite compositefinanck treesHerbaccousSeage-shrubtreestreesHerbaccoustreestreesHerbaccoustreesHerbaccoustreesHerbaccoustreesHerbaccoustreesHerbaccoustreesHerbaccous </th <th colspan="8">Maximum Likelihood Supervised Classification Error Matrix</th> <th></th> <th></th> <th></th>	Maximum Likelihood Supervised Classification Error Matrix												
100 100 120 120 100 100 100 100 100 200 100 589 0 27 0 4 0 49 5 596 143 0 0 0 1200 7 0 2 15 57 448 120 30.6 0 0 19 456 1981 0 2 15 57 448 390 50.23 0 0 19 456 1981 0 8 2 350 1144 390 50.23 0 0 19 0 0 1439 0 15 240 10 1439 0 0 0 127 0 0 1439 0 0 0 1439 0 10 10 10 10 0 0 0 0 0 1439 0 152 114 152 10.25 10.25 0 0 128 261 284 0 462 1973 639 1429 478 58.3 10 0 138 224 0 15 638 882 306 246 64.4 117 0 1439 2236 210 190 586 211 239 10.4 1107 711 6213 2614 1756 0 216 1439 2516 190 55.6 63.5 50.5	H_1 Saturated		-		Sedge-	Shadow			-		Total		
1 1	1106	0	0	2	10	0	0	7	0	258	1383	20.03	
1 1	o	741	0	124	12	0	0	8	0	117	1002	26.05	
0 0 19 456 1981 0 8 22 350 1144 980 50.23 0 0 0 0 0 0 0 0 0 0 1143 980 50.23 0 0 0 0 0 0 0 0 0 0 0 1439 0 0 0 127 0 0 0 0 1752 24 7 42 952 10.25 0 0 128 2 65 0 462 1973 639 1429 478 58.53 0 0 188 2 65 0 462 1973 639 1429 478 58.53 1 0 0 284 0 5 563 882 306 2346 62.4 1 0 0 216 177 0 3 198 6 2133 2359 10.4 1107 741 6213 2611 2403 1439 2266 2100 1990 5682 63.55 63.55 $50xer1Accuracy: 70.8450.0905.3854.0417.56021.6514.5955.6863.5563.55$	0	0	5879	0	27	0	4	0	49	5	5964	1.43	
0 0 0 0 0 1439 0 0 0 0 1439 0 0 0 127 0 0 0 1752 24 7 42 152 10.25 0 0 188 2 65 0 462 1973 639 1429 478 58.53 0 0 0 866 284 0 5 63 882 366 236 62.4 1 0 0 216 177 0 3 198 6 2113 251 10.4 107 741 6213 2611 2403 1439 2236 2310 1990 5862 63.95 55.68 63.95 55.68 63.95	0	0	0	1200	7	0	2	15	57	448	1729	30.6	
1 1	0	0	19	456	1981	0	8	22	350	1144	3980	50.23	
0 188 2 65 0 462 1973 639 1429 4758 58.53 0 0 0 806 284 0 5 63 882 306 2346 62.4 1 0 0 211 177 0 3 198 6 213 2359 10.43 1107 741 6213 2611 2403 1439 2236 2310 1990 5862 26912 0.09 0 5.38 54.04 17.56 0 21.65 14.59 55.68 63.95 50.41 50.45	0	0	0	0	0	1439	0	0	0	0	1439	0	
0 0 806 284 0 5 63 882 306 236 62.4 1 0 0 21 17 0 3 198 6 213 2359 10.43 1107 741 6213 2611 2403 1439 2236 2310 1990 5862 26912 0.09 0 5.38 54.04 17.56 0 21.65 14.59 55.68 63.95 $Cveral Accuracy: 70.847$	0	0	127	0	0	0	1752	24	7	42	1952	10.25	
1 0 0 21 17 0 3 198 6 213 2359 10.43 1107 741 6213 2611 2403 1439 2236 2310 1990 5862 26912 0.09 0 5.38 54.04 17.56 0 21.65 14.59 55.68 63.95 Overall Accuracy: 70.845	0	0	188	2	65	0	462	1973	639	1429	4758	58.53	
1107 741 6213 2611 2403 1439 2236 2310 1990 5862 26912 0.09 0 5.38 54.04 17.56 0 21.65 14.59 55.68 63.95 Overall Accuracy: 70.8457	0	0	0	806	284	0	5	63	882	306	2346	62.4	
0.09 0 5.38 54.04 17.56 0 21.65 14.59 55.68 63.95 Overall Accuracy: 70.8457	1	0	0	21	17	0	3	198	6	2113	2359	10.43	
	1107	741	6213	2611	2403	1439	2236	2310	1990	5862	26912		
	0.09	0	5.38	54.04	17.56	0	21.65	14.59	55.68	63.95			

Conclusions

1) Major vegetation types can be distinguished using 10band UAS imagery.

2) Maximum Likelihood was the best performing classifier.

3) Demonstrated potential to use UAS to map wetland communities.

4) Future research will examine use of object-based image analysis to classify groups of pixels