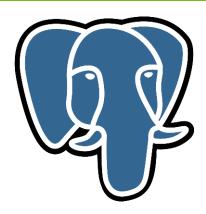

PostGIS and GISquirrel and PostgreSQL...

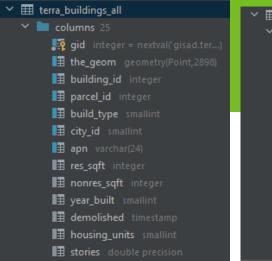
Oh My!

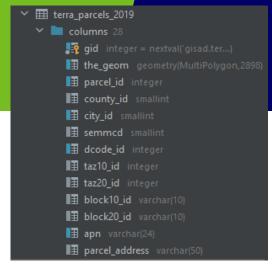

The Why and How we got started

- 2050 Forecast data was scattered
- Needed better analysis and performance
- SQL Server not performing for us
- Reliable/low cost
- Centralize forecast data

What is?

- PostgreSQL
 - Open source
 - Similar to Microsoft SQL Server
 - Uses common data types (String, Integer, etc.)
 - Allows for powerful indexing GiST
 - Easy to extend into other tools like python
- PostGIS
 - Open source extension for PostgreSQL
 - Allows for spatial data to be stored and queried
 - Functions
 - Supports common spatial references we use
 NAD_1983_HARN_StatePlane_Michigan_South_FIPS_2113_Feet_Intl
- GISquirrel
 - ArcMap add on
 - Use and edit layers from the database in a more relatable way.
 - Has free trial

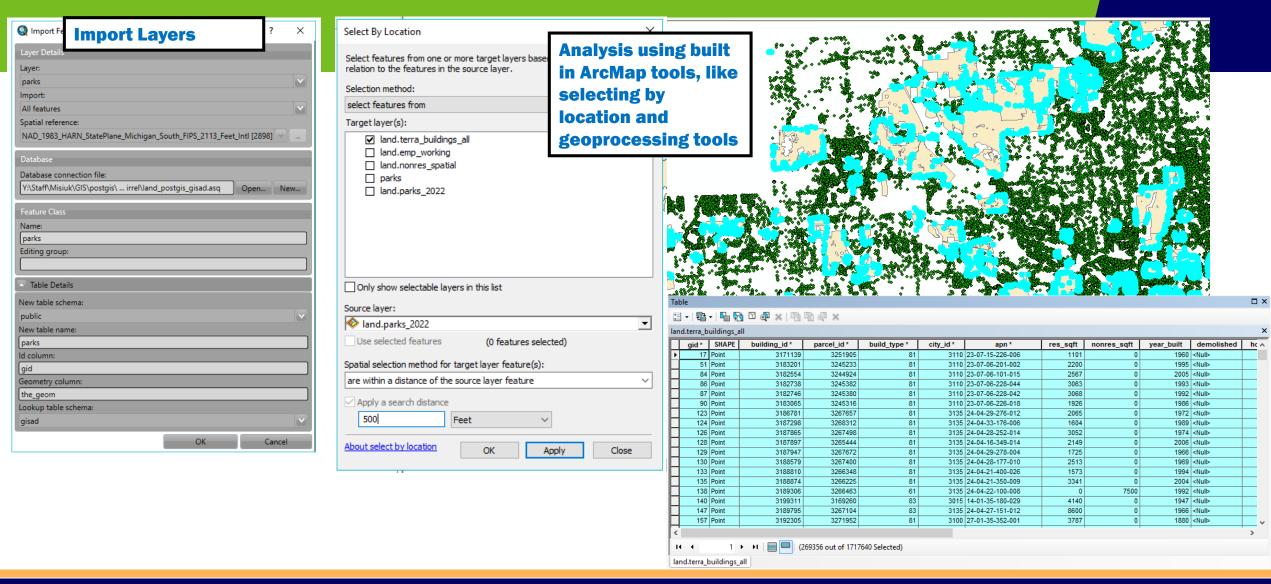

```
⇒SELECT p.*


FROM terra_parcels_2019 p

join terra_buildings_2020 b

on p.parcel_id = b.parcel_id

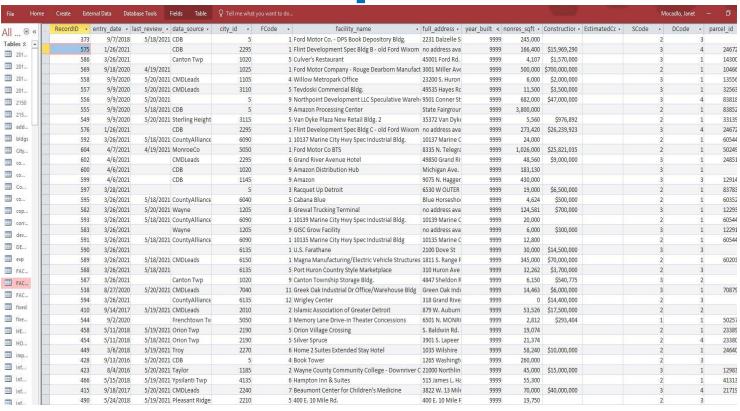

⇒where b.build_type in (81, 82, 83, 84)
```



	驔 gid 🕏	I⊞ the_geom ÷	■ parcel_id ÷	■ county_id ÷	I ≣ city_id ÷	■■ semmcd ÷	I≣ dcode_id ÷	∎≣ taz10_id ÷	∎≣ taz20_id ≎	■ block10_id :	■ block20_id	‡ I∃ apn
1	1275502	0106000020520B0000010000000103000000010000000000000	1345553	163	1020	1020	82160	19106		5649001010	5649001003	71 142 99 0021
2	1820491	0106000020520B0000010000000103000000010000001500000090F4	1438527	163	1170	1170	82160	16311		5858001021	5858001007	80 023 99 0002
3	1820491	0106000020520B0000010000000103000000010000001500000090F4	1438527	163	1170	1170	82160	16311		5858001021	5858001007	80 023 99 0002
4	1820491	0106000020520B000001000000010300000010000001500000090F4	1438527	163	1170	1170	82160	16311		5858001021	5858001007	80 023 99 0002
5	1496668	0106000020520B000001000000010300000010000001200000010B4	1412741	163	1180	1180	81070	15007		5894002001	5894021001	81 071 99 0005
6	65282	0106000020520B000001000000010300000010000001D000000A0D1	5006374	115	5010	5010	58030	53202		8335003018	8335004017	02 102 002 15
7	65282	0106000020520B000001000000010300000010000001D000000A0D1	5006374	115	5010	5010	58030	53202		8335003018	8335004017	02 102 002 15
8	59753	0106000020520B000001000000010300000010000000500000048F9	5006395	115	5010	5010	58030	53202		8335003041	8335003013	02 102 027 00

create index on table USING GIST (the_geom);

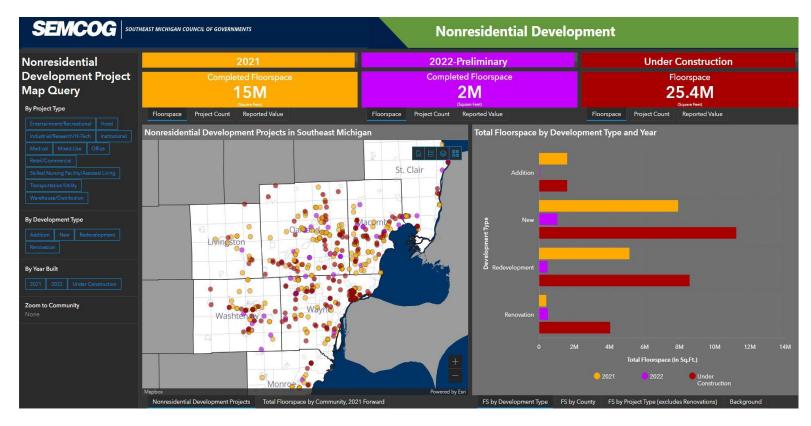
How do we use each?


- Setup
 - Linux server
 - PostgreSQL v13
 - PostGIS v3
 - ArcMap 10.8.1
- Data Structure
 - One database with one schema
- Connections
- Use in Enterprise

Demos

- GISquirrel
 - Import data
 - Editing
- Postgres and PostGIS overview in PyCharm
- Publish query layer in ArcGIS Pro

Workflow Example - Nonresidential Development Data


- Quick history
- Data originally housed in MS Access going back 20 years
- Annual development reports were always static pdfs
- Provided input to forecast using exports

Workflow Example - Nonresidential Development Data

"Perfect Timing"

- Desire to present data in an interactive, "real-time" way using ArcGIS Dashboards
- Forecast data now in PostgreSql. Made perfect sense to transition

Analysis

- Query demo
- Undevelopable

```
SELECT r.gid, r.fename, AVG(b.year_built)
FROM terminus_roads_v17 r,
    terra_buildings_all b
WHERE st_intersects(st_buffer(r.the_geom, 1000),
b.the_geom)
GROUP BY r.gid, r.fename
```

Extras

- Ogr2ogr
- Pg_tileserv

Key Takeaway

For very low cost, using these three tools in conjunction with ArcGIS Desktop and Enterprise, you can serve your internal and external stakeholders with a powerful back end that is <u>fast</u>, <u>flexible</u>, and <u>easy</u> to maintain.

Q and **A**

Contact Information

Chad Misiuk – GIS Coordinator SEMCOG 313-407-9996 misiuk@semcog.org

Janet Mocadio – Planner III SEMCOG 313-324-3434 mocadio@semcog.org